SMP/MTsAYU ARDHILLA RAHMA, PPG DALJAB 2021 UNY Fungsi Kuadrat, dan Grafik Fungsi Kuadrat Petunjuk Teknis Pengisin LKPD 1. Isilah identitasmu denganlengkap dan jelas 2. Kerjakan LKPD berikut dengan baik dan benar 3. Ikuti petunjuk untuk mengerjakan dan tulislah jawaban pada tempat yang telah disediakan! NAMA .............................................................................. KELAS ..............................................................................FUNGSI KUADRATA. Kompetensi Dasar dan Indikator PencapaianNo. Kompetensi Dasar Indikator Pencapaian Kompetensi1. Menjelaskan Menjelaskan definisi fungsi kuadratfungsi kuadrat Menentukan nilai-nilai fungsi kuadratdengan pada tabelmenggunakan Menentukan pembuat nol daritabel, persamaan, persamaan kuadratdan grafik Menentukan pasangan koordinat dari fungsi kuadrat pada bidang Cartesius Menghubungkan titik-titik koordinat sebagai grafik fungsi kuadrat2. Menyajikan Membuat tabel pasangan nilai variabelfungsi kuadrat dan nilai fungsi kuadratnyamenggunakan Menggambar sketsa grafik fungsitabel, kuadratpersamaan, dan Menentukan persamaan fungsi kuadratgrafik. jika diketahui titik puncak, titik potong, sumbu simetri atau beberapa titik pada persamaan kuadrat B. Tujuan PembelajaranMelalui proses mengamati, menanya, mengumpulkan dan mengolahinformasi serta mengkomunikasikan hasil mengolah informasi dalampenugasan individu dan kelompok, peserta didik dapat1. Menjelaskan definisi fungsi kuadrat dengan benar2. Membuat tabel pasangan nilai variabel dan nilai fungsi kuadratnya dengan tepat3. Menentukan pembuat nol dari persamaan kuadrat dengan tepat4. Menentukan pasangan koordinat dari fungsi kuadrat pada bidang Cartesius dengan tepat5. Menghubungkan titik-titik koordinat sebagai grafik fungsi kuadrat dengan tepat6. Menggambar sketsa grafik fungsi kuadrat dengan benar7. Menjelaskan pengaruh dari koefisien x2 pada fungsi kuadrat fx terhadap karakteristik dari grafik fungsi fx dengan tepat8. Menentukan fungsi kuadrat jika diketahui grafiknya, titik puncak, titik potong, sumbu simetri atau beberapa titik pada persamaan kuadrat dengan tepat KB1 Menentukan Nilai-nilai suatu Fungsi Kuadrat Tujuan Pembelajaran Melalui proses penemuan dan diskusi kelompok, peserta didik dapat 1. Menjelaskan definisi fungsi kuadrat dengan benar 2. Menentukan nilai-nilai fungsi kuadrat pada tabel secara tepat 3. Menentukan pasangan koordinat dari fungsi kuadrat pada bidang Cartesius dengan benar 4. Menghubungkan titik-titik koordinat sebagai fungsi kuadrat secara tepat Alat dan Bahan ο· Alat Pulpen atau Pensil, Penghapus, Penggaris dan pensil atau spidol warna. ο· Bahan Buku kotak-kotak. Alokasi Waktu 40 menit Prosedur Kerja 1. Sediakan alat dan bahan serta media yang akan digunakan dalam menyelesaikan LKPD 2. Kerjakan tugas yang ada dalam LKPD secara mandiri. 3. Amati dan analisislah setiap kegiatan yang diberikan dengan Bentuk umum fungsi kuadrat y = ax2 + bx+ c, dengan a β 0, x, y Ρ R. Fungsi kuadrat dapat pula dituliskan sebagai fx = ax2 + bx+ Dalam membuat grafik fungsi kuadrat dapat dilakukan dengan cara β’ Menentukan nilai-nilai fungsi kuadrat dengan cara mensubstitusi nilai variabel x β’ Buat tabel fungsi kuadrat β’ Tempatkan titik-titik koordinat dalam tabel pada bidang koordinat β’ Hubungkan titik-titik koordinat sebagai fungsi kuadrat secara tepatKegiatan 1. Menggambar Grafik Fungsi y = ax2Gambarlah grafik fungsi kuadrat berikuta. y = x2b. y = -x2c. y = 2x2Penyelesaian Langkah-langkahnya adalah sebagai berikut1. Menentukan nilai-nilai dari Fungsi Kuadrat yang adaa. Fungsi Kuadrat y = x2 b. Fungsi Kuadrat y = -x2Jika x = -3 maka y = β¦..2 = β¦.. Jika x = -3 maka y = -β¦..2 = β¦.. x = -2 maka y = β¦..2 = β¦.. x = -2 maka y = -β¦..2 = β¦.. x = -1 maka y = β¦..2 = β¦.. x = -1 maka y = -β¦..2 = β¦.. x = 0 maka y = β¦..2 = β¦.. x = 0 maka y = -β¦..2 = β¦.. x = 1 maka y = -β¦..2 = β¦.. x = 1 maka y = β¦..2 = β¦.. x = 2 maka y = -β¦..2 = β¦.. x = 2 maka y = β¦..2 = β¦.. x = 3 maka y = -β¦..2 = β¦.. x = 3 maka y = β¦..2 = β¦..2. Melengkapi Tabel berdasarkan Nilai-nilai Fungsi Kuadrat yang ada = = β x y x,y x y x,y-3 -3-2 -2-1 -1001122331. Tempatkan titik-titik koordinat yang berada dalam tabel pada bidang koordinat gunakan tiga warna berbeda2. Gambarlah grafik dengan menghubungkan titik-titik koordinat tersebut. Ket Kurva y = x2 ditandai dengan warna biru Kurva y = -x2 ditandai dengan warna hitam Kurva y = 2x2 ditandai dengan warna merahKesimpulan Dari kegiatan 1 di atas, kesimpulan apa yang dapat kamu peroleh? Nilai a pada fungsi = 2 akan mempengaruhi bentuk grafiknya Jika a > 0 maka grafiknya akanβ¦β¦β¦β¦β¦β¦β¦β¦β¦.. Jika a 0, berarti grafik fungsi kuadrat berbentuk parabola yangterbuka ke β¦β¦..b. Sumbu simetri = β 2 β¦ = β2β¦=β―Nilai optimum 2 β 4 = β 4 = β β¦2 β 4 β¦ Γ β¦ 4β¦ β¦ββ― = β β¦ = β―Jadi titk optimim adala , = β¦ , β¦ TUGAS MANDIRI Diketahui fungsi kuadrat fx = -2x 2 + 7x β 3 Tentukan a. bentuk grafik fungsi kuadrat b. sumbu simetri, nilai optimum, dan titik optimum KB3 Membuat Sketsa Grafik Fungsi KuadratTujuan PembelajaranMelalui proses mengamati, menanya, mengumpulkan dan mengolah informasiserta mengkomunikasikan hasil mengolah informasi dalam penugasan individudan kelompok, peserta didik dapat 1. Menentukan pembuat nol dari persamaan kuadrat 2. Menyebutkan langkah-langkah menggambar grafik fungsi kuadrat dengan benar 3. Menggambar sketsa grafik fungsi kuadrat dengan benarAlokasi waktu 30 MenitAlat dan bahan1. Alat Pulpen atau Pensil, Penghapus dan Penggaris2. Bahan LKPDProsedur Kerja ο· Amati langkah-langkah untuk membuat sketsa grafik Fungsi Kuadrat ο· Kerjakan tugas yang ada dalam LKPD secara mandiriTeoriLangkah-langkah yang diperlukan untuk membuat sketsa grafik fungsi kuadrat = 2 + + adalah sebagai berikutο· Menentukan titik potong dengan sumbu X, diperoleh jika = 0ο· Menentukan titik potong dengan sumbu Y, diperoleh jika = 0ο· Menentukan persamaan sumbu simetri = β 2 ο· Menentukan nilai optimum grafik = β 2β4 4 ο· Menentukan koordinat titik optimum , = β , β 2β4 2 4 Contoh soalBuatlah sketsa grafik fungsi kuadrat y = x2 + 4x - 5Penyelesaiankarena a > 0, berarti grafik fungsi kuadrat berbentuk parabola yangterbuka ke β¦β¦..a. Titik potong dengan sumbu X, jika y = 0 = 2 + 4 β 50 = + β― β β― Sehingga dperoleh, + β― = 0 atau β β― = 0Dengan = β― = β―Dan memotong sumbu X di titik β― ,0 dan β― ,0b. Titik potong dengan sumbu Y, jika x = 0 = 2 + 4 β 5 = β―2 + 4 β― β 5 = β5 Dan memotong sumbu Y di titik 0, β5c. Persamaan sumbu simetri β β― = 2 = β― = β―d. Nilai optimum 2 β 4 = β 4 β―β4β―Γβ― = β 4 β― β― = β β― = β―e. Koordinat titik optimum , = β― , β― TUGAS MANDIRI Buatlah sketsa grafik fungsi kuadrat y = -x2 - 2x+ 35 dengan menuliskan langkah- langkahnya terlebih dahulu! KB4 Menentukan Persamaan Fungsi KuadratTujuan Pembelajaran Melalui proses mengamati, menanya, mengumpulkan dan mengolah informasi serta mengkomunikasikan hasil mengolah informasi dalam penugasan individu dan kelompok, peserta didik dapat Menentukan fungsi kuadrat jika sudah diketahui grafiknya dan dikerjakan secara teliti. Menentukan fungsi kuadrat jika diketahui titik puncak, titik potong, sumbu simetri atau beberapa titik pada persamaan kuadrat dan dikerjakan secara waktu 30 menitProsedur Kerja ο· Pelajari dan pahamilah cara untuk menentukan Fungsi Kuadrat jika diketahui titik puncak, titik potong, sumbu simetri atau beberapa titik. ο· Kerjakan tugas yang ada dalam LKPD secara mandiriTeori ο· Jika diketahui titik puncaknya adalah , maka rumus fungsi kuadrat nya adalah = β 2 + Dengan nilai a didapat dari mensubstitusi titik x,y yang dilalui. ο· Jika titik ppotong sumbu x adalah 1, 0 dan 2, 0, maka rumus fungsi kuadratnya adalah = β 1 β 2 Dengan nilai a didapat dari mensubstitusikan titik x,y yang diketahuiContoh soal 1. Sebutkan grafik fungsi kuadrat memotong sumbu-X di A1,0 dan B2,0. Apabila grafik tersebut juga melalui titik 0,4, tentukanlah persamaan fungsi kuadratnya! Penyelesaian Titik potong A1,0 dan B2,0 Sehingga 1 = β― dan 2 = β― Persamaan fungsi kuadrat dapat dinyatakan sebagai = β 1 β 2 = β β― β β― Nilai a ditentukan dari keterangan bahwa fungsi kuadrat itu melalui titik 0, 4. Artinya untuk nilai = 0 diperoleh = β― = β β― β β― 4 = 0 β β― 0 β β― 4 = β― β― 4 = β― β― = 4 = β― Dengan demikian, persamaan fungsi kuadratnya adalah = β β― β β― = β― β β― β β― = β― 2 β β― + β― = β― 2 β β― + β―2. Sebuah grafik fungsi kuadrat mempunyai titik puncak di koordinat 1,2. Apabila grafik tersebut juga melalui titik 2,3, tentukan persamaan fungsi kuadratnya! Penyelesaian Titik puncak 1,2, maka , = β― , β― Persamaan fungsi kuadratnya = β 2 + = β β― 2 + β― Nilai a ditentukan dari keterangan bahwa fungsi kuadrat itu melalui titik 2,3. Artinya untuk nilai = 2 diperoleh = β― = β β― β β― β― = 2 β β― 2 β β― β― = β― β― β― = β― β― = β― = β― Dengan demikian, persamaan fungsi kuadratnya adalah = β β― 2 + β― = β― β― β β― 2 + β― = β― β― 2 β β― + β― + β― = β― 2 β β― + β― + β― = β― 2 β β― + β―PenilaianLatihan Soal1. Gambarlah grafik y = x2+ x β2 dengan terlebih dahulu melengkapi tabel nilai-nilai fungsiberikut ini!x y = x2 + x - 2 x,y-3 -32 + -3 - 2 = 4 -3,4-2-101232. Diketahui fungsi kuadrat fx = 5x 2 β 7x β 6 Tentukana. bentuk grafik fungsi kuadrat b. sumbu simetri, nilai optimum, dan titik optimum3. Buatlah sketsa menggambar grafik fungsi kuadrat fx = x2 β 3x + 2 dengan langkah-langkah yang tepat!............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Jawaban Grafik fungsi kuadrat. f\left (x\right)=x^2-6x+7. dapat diperoleh dengan menggeser grafik fungsi kuadrat. f\left (x\right)=x^2. ke arah. A. Kanan pada sumbu x sejauh 2 satuan, dan bawah pada sumbu y sejauh 3 satuan. B. Kiri pada sumbuxsejauh 3 satuan, dan bawah pada sumbuysejauh 2 satuan.
Jadigrafik fungsi y = x2 - 4x - 8 memotong sumbu y di titik (0, -8) 2. Pembuat nol dari fungsi kuadrat y = x2 - x - 12 adalah: a. Grafik fungsi y = ax2 + bx + c memotong sumbu X di titik dengan absis 0 dan 2. Puncaknya di titik (1, 1). Fungsi itu adalah: a. y = x2 - 2x - 2 b.
KATA PENGANTARPuji syukur kepada Allah SWT, karena atas rahmat-Nya, penulis dapat menyelesaikan bukuajar berjudul Fungsiβ dengan lancar. Buku ini ditulis untuk membantu pengajar atau siswayang membutuhkan berbagai materi dan juga pengayaan tentang juga mengucapkan terima kasih kepada berbagai pihak yang sudah membantusehingga buku ajar ini selesai dengan sangat baik, yaitu 1. Ibu Hastri Rosiyanti, M. Pmat. Selaku Dosen pembimbing PPG dalam jabatan kategori 1 gelombang 2 yang telah memberikan bimbingan dan arahan dalam penyusunan buku ajar ini. 2. Bapak GP. Santoso, selaku guru pamong PPG dalam jabatan kategori 1 gelombang 2 yang telah memberikan masukan dalam penyusunan buku ajar ini. 3. Bapak Dr. H. Dedi Kenedi, selaku Kepala SMAN 1 Astanajapura yang telah memberikan dukungan penuh dalam pelaksanaan PPG dalam jabatan kategori 1 gelombang 2 4. Bapak/Ibu guru di sekolah yang selalu memberikan semangat dan motivasi dalam penyusunan buku ajar ini. 5. Teman β teman dalam jabatan kategori 1 gelombang 2 yang saling memberikan semangat dan motivasi dalam penyusunan buku ajar iniPenulis menyadari masih banyak kekurangan dalam penulisan buku ajar ini, untuk itupenulis mengharapkan saran dan kritik membangun untuk perbaikan. Semoga buku in idapat bermanfaat bagi penulis dan pembaca. Cirebon, 28 November 2022 Penulis,DAFTAR ISICoverKata Pengantar ...............................................................................................iDaftar Isi.........................................................................................................iiPeta Konsep ...................................................................................................1Kompetensi Dasar dan IPK ..............................................................................2Tujuan Pembelajaran dan Deskripsi Materi ....................................................3Definisi Fungsi kuadrat ...................................................................................4Menggambar grafik fungsi kuadrat .................................................................4Mencari domain .............................................................................................9Rangkuman ....................................................................................................10Daftar Pustaka ................................................................................................11 iiPETA KONSEP 123Fungsi KuadratFungsi kuadrat adalah suatu fungsi yang memiliki variabel dengan pangkat tertinggi umum fungsi kuadrat adalahGrafik Fungsi KuadratLangkah-langkah menggambar grafik fungsi Menentukan titik potong dengan sumbu X. Titik potong dengan sumbu X diperoleh jika y = 0 atau 2 + + 2. Menentukan titik potong dengan sumbu Y. Titik potong dengan sumbu Y diperoleh jika x = Menentukan koordinat titik Persamaan sumbu simetri = β 2 b. Nilai ekstrem = β 4 KEGIATAN 1 Menggambar grafik fungsi kuadrat yang paling sederhana, yakni ketika b = c = mendapatkan grafiknya kamu dapat membuat gambar untuk beberapa nilai x dansubsitusikannya pada fungsi y = ax2 , misalkan untuk a = 1, a = 2, dan a = -2Untuk mendapatkan grafik suatu fungsi kuadrat , kamu terlebih dahulu harus mendapatkanbeberapa titik koordinat yang dilalui oleh fungsi kuadrat Melengkapi tabel y = x2 x,y y = 2x2 x,y y =-2x2 x,y-3 -32 -3,9 -3 -32 -3,18 -3 -32 -3,-18-2 -22 -2,4 -2 -22 -2,8 -2 -22 -2,-8-1 -12 -1,1 -1 -12 -1,2 -1 -12 -1,-20 02 0,0 0 02 0,0 0 02 0,01 12 1,1 1 12 1,2 1 12 1,-22 22 2,4 2 22 2,8 2 22 2,-83 32 3,9 3 32 3,18 3 32 3,-18 42. Tempatkan titik-titik koordinat yang berada dalam tabel pada bidang koordinat gunakan tiga warna berbeda3. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut Ket Kurva y = x2 ditandai dengan warna biru Kurva y = 2x2 ditandai dengan warna hijau Kurva y = -2 x2 ditandai dengan warna merahNilai a pada fungsi y = ax2 akan mempengaruhi bentuk grafiknya - Jika a > 0 maka grafiknya akan terbuka ke atas - Jika a 0 dan nilai a makin besar maka grafiknya akan semakin βkurusβ - Jika a 0 dan bergeser c satuan ke bawah jika c 0 maka grafiknya y = ax2 + bx + c memiliki titik puncak minimum. Jika a 0 maka grafiknya akan terbuka ke atas - Jika a 0 dan nilai a makin besar maka grafiknya akan semakin βkurusβ - Jika a 0 dan bergeser c satuan ke bawah jika c 0 maka grafiknya y = ax2 + bx + c memilikititik puncak minimum. Jika a < 0 maka grafik y = ax2 + bx + c memiliki titik Nilai c pada grafik y = ax2 + bx + c menunjukkan titik perpotongan grafik fungsi kuadrat tersebut dengan sumbu β Y, yakni pada koordinat c,0.Soal EvaluasiGambarlah grafik fungsi kuadrat = 2 + 2 β 3! 6DAFTAR PUSTAKAKemdikbud. 2017. Buku Paket matematika wajib kelas X. Jakarta Pusat Kurikulum 2016. Matematika untuk SMA/MA kelas X semester 1. Jakarta ErlanggaKurniasari Yeni, Asep Ikin Sugandi , Ratna Sariningsih. Analisis Kesalahan Siswa Kelas X DalamMenyelesaikan Soal Materi Fungsi Kuadrat Berdasarkan Prosedur Kastolan. Jurnal PembelajaranMatematika Inovatif Volume 4, No. 6, November 2021. 7 Videoini berisi tentang langkah-langkah sederhana bagaimana cara menggambar grafik fungsi kuadrat.- Jika Anda menemukan masalah mengenai mencari hasil biaya parkir maksimum, maka Anda bisa menggunakan penyelesaian masalah program linear. Dilansir dari buku TOP No 1 UN SMA/MA IPA 2016 2015 oleh Tim Guru Indonesia, langkah-langkah penyelesaian masalah program linear, yaitu Terjemahkan permasalahan ke dalam bahasa matematika model matematika Tentukan peubah x dan y Tentukan fungsi obyektif dan kendala-kendalanya Membuat grafik pada bidang cartesius untuk menentukan daerah penyelesaiannya Menentukan nilai optimum dengan mensubstitusikan titik pojok ke dalam fungsi obyektif Baca juga Cara Menghitung Keuntungan Maksimum pada Program Linear Tips menggambar grafik ax+by = c Berikut tata cara menggambar grafik ax+by = c Tentukan titik potong grafik dengan sumbu X Tentukan titik potong grafik dengan sumbu Y Atau dituliskan dalam tabel - persamaan garis Baca juga Program Linear Kasus Daerah Penyelesaian Sistem Pertidaksaman Contoh soal Tempat parkir seluas 600 mΒ² hanya mampu menampung 58 bus dan mobil. Tiap mobil membutuhkan tempat seluas 6 mΒ² dan bus 24 mΒ². Biaya parkir tiap mobil Rp dan bus Rp Berapa hasil dari biaya parkir maksimum, jika tempat parkir penuh? A. Rp Rp Rp Rp Rp
UNTUK KELAS IX SMPMODUL FUNGSIKUADRAT DISUSUN OLEH KRESNANDIKA W UNIVERSITAS PGRI YOGYAKARTATINJAUAN MATA PELAJARAN A. Deskripsi mata pelajaran. Matematika merupakan salah satu pelajaran yang wajib diterima siswa dalam pembelajaran di sekolah. Belajar matematika sangatlah menuntut anda untuk berpikir. Setiap orang memiliki kemampuan yang berbeda-beda dalam berpikir. Ada kemampuan berfikirnya cepat ada juga yang lambat. Dengan mengerjakan penyelesaian soal dapat melatih cara berpikir anda untuk lebih keras lagi. Ketika jawaban anda salah, harus diperbaiki sampai jawabannya benar. Sehingga tujuan anda untuk menyelesaikan soal tersebut mendapat hasil yang memuaskan. Untuk kali ini, materi yang akan dibahas yaitu materi fungsi kuadrat. Untuk materi diantaranya 1. Persamaan fungsi kuadrat. 2. Tabel fungsi kuadrat. 3. Grafik fungsi kuadrat. B. Kegunaaan mata pelajaran. Mata pelajaran fungsi kuadrat memiliki kegunaan, baik bagi guru maupunpeserta didik. Guru lebih mudah mengajar bahan ajar jika terkonsep. Peserta didik jiga akan merasa lebih mudah mengikuti dan akan tertarik terhadap pelajaran yang disajikan secara sisrematis, komunikatif, dan integrative. Selain itu, dengan adanya penggunaan bahasa yang sederhana serta contoh kegunaan akan membuat pesera didik lebih termotivasi untuk belajar. Keteranpilan yang perlu ditingkatkan adalah berfikir secara kritis dan kreatif, membaca soal, dan menulis jawaban secara urut dan teratur. Kegunaan mata pelajaran fungsi kuadrat dalam kehidupan sehari-hari adalah membantu menjadi pribadi yang lebih teliti, cermat, tidak ceroboh, mampu berfikir secara sistematis, kritis, dan kreatif. Selain itu, matematika boleh dibilang menjadi cara bagi manusia untuk memahami aturan-aturan yang berlaku di alam semesta. Begitu pula dengan fungsi kuadrat, yang dapat memudahkan kita memecahkan persoalan. Contoh aplikasi fungsi kuadrat bisa kita perhatikan pada contoh soal di bawah ini. Contoh soal dari dua bilangan genap yang berurutan adalah 580. Berapakah bilangan genap yang berurutan tersebut?MODUL FUNGSI KUADRAT UNTUK SMP KELAS IXKita dapat mengumpamakan bahwa bilangan pertama adalah a dan bilangan kedua adalah a+2. Diketahui bahwa a2 + a+22 = 580. Dengan menyederhanakan bentuk persamaan dan faktorisasi persamaan kuadrat, kita akan memperoleh a2 + a+22 = 580 a2 + a2 + 4a + 4 = 580 2a2 + 4a β 576 = 0 a2 + 2a β 288 = 0 a β 16 a β 18 = 0 Berdasarkan bentuk terakhir persamaan kuadrat tersebut, kita dapat menyimpulkan bahwa bilangan genap yang dimaksud adalah 16 dan 18. Tapi, bagaimana sebenarnya aplikasi fungsi kuadrat di kehidupan sehari-hari? Ternyata, kurva dari fungsi kuadrat sering lho kita temui. Kurva fungsi kuadrat sangat disukai karena bentuknya yang simetris dan mirip dengan parabola. Arsitektur yang memiliki bentuk melengkung simetris, seperti tiang jembatan, juga dibangun dengan berpatokan pada rumus fungsi kuadrat. Fungsi kuadrat juga bisa digunakan untuk menyelesaikan permasalahan yang berkaitan dengan proyektil karena kurvanya juga menyerupai lintasan benda jatuh. Kita bisa menghitung puncak tertinggi benda yang dilempar atau kecepatan bola pada lintasan parabola dengan persamaan fungsi kuadrat. C. Kompetensi dasar. KD Menjelaskan fungsi kuadrat dengan menggunakan tabel, persamaan, dan grafik KD Menyajikan fungsi kuadrat menggunakan tabel, persamaan, dan grafik. D. Bahan pendukung lainnya. Media / alat 1. Laptop. 2. LCD. 3. Media pembelajaran berupa alat peraga. Bahan 1. LKS materi tentang fungsi kuadrat. Sumber belajar 1. Buku paket/ Buku pelajaran matematika kelas FUNGSI KUADRAT UNTUK SMP KELAS IXE. Petunjuk Belajar. Berikut adalah langkah-langkah yang disarankan bagi peserta didik dalam menggunakan bahan ajar ini. 1. Materi modul terbagi atas 3 kegiatan belajar siswa yaitu kegiatan belajar 1, kegiatan belajar 2, dan kegiatan belajar 3. 2. Bacalah terlebih dahulu kompetensi yang harus dicapai yang terletak sebelum pembahasan. 3. Pahami uraian materi dengan seksama dan perhatikan contoh soal yang diberikan dengan sebaik-baiknya. 4. Kerjakan latihan soal yang ada dalam setiap sub-materi. 5. Bacalah kembali rangkuman yang ada di akhir modul. 6. Kerjakan tes formatif yang ada di akhir FUNGSI KUADRAT UNTUK SMP KELAS IXPENDAHULUAN A. Cakupan isi modul. Modul ini berisi tentang fungsi kuadrat yang tentunya akan membahas seputar fungsi kuadrat. Modul ini dikhususkan untuk siswa SMP terttama kelas IX. Pada modul ini terdapat juga materi sekaligus contoh dari persoalan terkait fungsi kuadrat. Dengan ditambahkan latihan soal siswa diharapkan mampu menyerap ilmu terkait fungsi kuadrat dengan mudah. Pada materi ini akan dibagi menjadi 3 sub bab, yaitu 1. Fungsi kuadrat dengan menggunakan tabel. 2. Fungsi kuadrat dengan menggunakan persamaan. 3. Fungsi kuadrat dengan menggunakan grafik. B. Indikator yang ingin dicapai melalui sajian materi dan kegiatan modul. Menjelaskan fungsi kuadrat dengan menggunakan tabel. Menjelaskan fungsi kuadrat dengan menggunakan persamaan. Menjelaskan fungsi kuadrat dengan menggunakan grafik. Menyajikan fungsi kuadrat dengan menggunakan tabel Menyajikan fungsi kuadrat dengan menggunakan peramaan. Menyajikan fungsi kuadrat dengan menggunakan grafik. C. Deskripsi perilaku awal entry behaviour. Modul ini merupakan bagian dari mata pelajaran yang secara khusus membahas terkait fungsi kuadrat. Secara konseptual modul ini dirancang untuk memfasilitasi mahasiswa agar mampu menganalisis karakteristik konseptual Belajar dan Pembelajaran beserta implikasinya terhadap pendidikan yang terkait pada proses pembelajaran. Secara umum setelah mempelajari modul ini Anda diharapkan mampu menganalisis karakteristik konseptual dan penerapan konsep belajar dan pembelajaran secara komprehensif. D. Relevansi. Pembelajaran SMP saat ini diarahkan untuk mengembangkan kemampuan berpikir tinggi atau yang dikenal dengan Higher Order Thinking Skills HOTS bukan lagi Lower Order Thinking Skills LOTS. Begitu pula pada pembelajaran matematika, termasuk pada materi pokok atau kompetensi dasarnya. Tujuan dari penelitian ini adalah untuk mengetahui relevansi materi pokok matematika SMP pada materi fungsi kuadrat dengan HOTS. Pengumpulan data dalam penelitian ini dilakukan dengan studi pustaka library research. Data primer yang digunakan adalah buku guru dan buku siswa kelas IX, sedangkan data sekundernya adalah teori- teori maupun gagasan dari buku dan jurnal ilmiah yang relevan. Analisis data dilakukan dengan analisis isi content analysis. Hasil dalam penelitian ini adalah materi pokok matematika pada buku siswa kelas IX belum relevan dengan HOTS. Sebagian besar indikator matematika pada buku siswa kelas IX masih termasukMODUL FUNGSI KUADRAT UNTUK SMP KELAS IXdalam LOTS C1, C2, dan C3. Agar dapat relevan dengan HOTS, guru sebaiknya melakukan pengembangan materi yang dapat dimulai dengan menyusun kembali indikator matematika, pembelajaran, dan penilaian yang disesuaikan dengan aspek- aspek HOTS. E. Kegiatan belajar. 1. Kegiatan 1 tentang fungsi kuadrat dengan menggunakan tabel. 2. Kegiatan 2 tentang fungsi kuadrat dengan menggunakan persamaan. 3. Kegiatan 3 tentang fungsi kuadrat dengan menggunakan grafik. F. Petunjuk modul. Modul materi Fungsi Kuadrat ini disusun untuk membantu peserta didik kelas IX dalam mengembangkan kemampuanmemahami fungsi kuadrat dengan menggunakan tabel, persamaan dan grafik. Dalam penyusunannya, bahan ajar ini disesuaikan dengan Kompetensi Inti dan Kompetensi Dasar Kurikulum 2013 yang berlaku saat ini. Bahan ajar matematika materi Fungsi Kuadratini juga mempelajari matematika khususnya dalam materi menjelaskan dan menyajikan fungsi kuadrat dengan menggunakan tabel, persamaan, dan grafik. Sistematika bahan ajar ini adalah sebagai berikut 1. Sebelum menginjak pada pembahasan, bahan ajar ini diawali dengan paparan kompetensi yang harus dicapai oleh peserta didik. 2. Materi pembahasan diawali dengan stimulus berupa contoh kasus nyata atau pun permasalahan matematis serta aktivitas relevan. 3. Uraian materi merupakan materi pokok/materi pembelajaran dalam bahan ajar. Materi disajikan dengan bahasa yang sederhana sehingga mudah dipahami. 4. Setiap pembahasan sub materi dilengkapi dengan contoh soal untuk memperjelas konsep yang dipelajari. 5. Latihan berisi soal-soal untuk menguji kemampuan peserta didik dalam memahami materi yang dipelajari. Latihan yang disajikan sudah disesuaikan dengan indikator-indikator menerapkan dan memecahkan masalah pecahan dalam kehidupan sehari-hari. 6. Rangkuman berisi pokok-pokok pembicaraan materi yang telah selesai dipelajari. 7. Tes formatif berisi soal-soal untuk melihat kemampuan menerapkan dan memecahkan masalah pecahan dalam kehidupan FUNGSI KUADRAT UNTUK SMP KELAS IXPETA KONSEPMODUL FUNGSI KUADRAT UNTUK SMP KELAS IXPRA KEGIATAN BELAJAR PRA KEGIATAN BELAJAR Sebelumnya, kalian telah mempelajari persamaan linear dan persamaan kalian masih ingat tentang materi tersebut? Mari kita ulang sebentar materi tersebutdengan menjawab soal berikut.ο Persamaan Linear 1. 3x + 1 = -7Penyelesaian1. 3x + 1 = -73x + 1 - 1 = -7 -13x = -83 = β83 3 β8 x = 3ο Persamaan Kuadrat Saat kalian melempar bola ke udara, ketinggian bola tergantung pada tiga faktor, yaitu posisi awal, kecepatan saat bola di lemparkan, dan gaya gravitasi. Gravitasi bumi menyebabkan bola yang terlempar ke atas mengalami percepatan ketika benda semakin mendekati bumi . Besar percepatan gravitasi bumi sebesar 9,8 m/s2. Ini berarti bahwa kecepatan bola ke bawah meningkat 9,8 m/s untuk setiap detik di udara. Jika kalian menyatakan ketinggian bola pada setiap waktu dengan suatu persamaan, maka persamaan yang terbentuk adalah persamaan kuadrat. KEGIATAN BELAJAR FUNGSI KUADRAT Fungsi kuadrat adalah fungsi yang berbentuky = ax2 + bx + c, dengan a β 0, x, y kuadrat dapat pula dituliskan sebagai fx = ax2 + bx + c. Bagaimanakah caramenggambar fungsi kuadrat pada bidang kartesius? Apa pengaruh nilai a, b, dan c terhadapgrafik fungsi kuadrat?MODUL FUNGSI KUADRAT UNTUK SMP KELAS IXKEGIATAN BELAJAR 1Kegiatan 1 fungsi kuadrat dengan menggunakan tabelFungsi kuadrat dapat digambarkan ke dalam koordinat kartesius sehinggadiperoleh suatu grafik fungsi kuadrat. Sumbu x adalah domain dan sumbu y adalahkodomain. Grafik dari fungsi kuadrat berbentuk seperti parabola sehingga sering disebutgrafik parabola. Untuk menyajikan suatu fungsi kuadrat ada 3 langkah yang harus kamulakukan, yaitu ο· Membuat tabel fungsi kuadratο· Tempatkan titik-titik koordinat yang berada dalam tabel pada bidang koordinatο· Sketsa grafik dengan menghubungkan titik-titik koordinat tersebutAgar kamu lebih paham menyajikan fungsi kuadrat marilah kita coba tampilan LATIHANKegiatan 1 menggambar Grafik Fungsi y = ax2 Menggambar grafik fungsi kuadrat yang paling sederhana, yakni ketika b = c = mendapatkan grafiknya kamu dapat membuat gambar untuk beberapa nilai x dansubsitusikannya pada fungsi y = ax2, misalkan untuk a = 1, a = 2, dan a = -2Untuk mendapatkan grafik suatu fungsi kuadrat , kamu terlebih dahulu harus mendapatkanbeberapa titik koordinat yang dilalui oleh fungsi kuadrat Melengkapi tabely= x2 x,y y=2x2 x,y -3 -32 -3,18-3 -32 -3,9 -2 -22 -2,8 y=-2x2 x,y -1 -12 -1,2 -3 -32 -3,-18-2 -22 -2,4 0 02 0,0 -2 -22 -2,-8 1 12 1,2 -1 -12 -1,-2-1 -12 -1,1 2 22 2,8 0 02 0,0 3 32 3,18 1 12 1,-20 02 0,0 2 22 2,-8 3 32 3,-181 12 1,12 22 2,43 32 3,9MODUL FUNGSI KUADRAT UNTUK SMP KELAS IX2. Tempatkan titik-titik koordinat yang berada dalam tabel pada bidang koordinat gunakan tiga warna berbeda 3. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut Ket Kurvay = x2 ditandai dengan warna biru Kurvay = 2x2 ditandai dengan warna hijau Kurvay = -2x2ditandai dengan warna merahB. RAMBU-RAMBU LATIHAN Nilai a pada fungsi y = ax2akan mempengaruhi bentuk grafiknya - Jika a > 0 maka grafiknya akan terbuka ke atas - Jika a 0 dan nilai a makin besar maka grafiknya akan semakin βkurusβ - Jika a 0 dan bergeser c satuan ke bawah jika c 0 dan bergeser c satuan ke bawah jika c 0 maka grafiknya y = ax2 + bx + c memiliki titik puncak a 0 maka grafiknya akan terbuka ke atas - Jika a 0 dan nilai a makin besar maka grafiknya akan semakin βkurusβ - Jika a 0 dan bergeser c satuan ke bawah jika c 0 maka grafiknya y = ax2 + bx + cmemiliki titik puncak minimum. Jika a < 0 maka grafik y = ax2 + bx + c memiliki titik pucak Nilai c pada grafik y = ax2 + bx + c menunjukkan titik perpotongan grafik fungsi kuadrat tersebut dengan sumbu β Y, yakni pada koordinat c,0.MODUL FUNGSI KUADRAT UNTUK SMP KELAS IXTES NORMATIF1. Dengan tabel, gambarlah grafik fungsi kuadrat y = 1 2 2 1 y = 2 2 x,y-3-2-101232. Dengan persamaan, lengkapi tabel dan gambarlah grafik fungsi kuadrat y = 2 + x y = 2 + x x,y-3-2-101233. Menggunakan grafik, lengkapi tabel dan gambarlah fungsi kuadrat y = x2- x - 2 y = x2 -x -2 x,y-3-2-10MODUL FUNGSI KUADRAT UNTUK SMP KELAS IX1 2 3MODUL FUNGSI KUADRAT UNTUK SMP KELAS IXKUNCI JAWABAN TES NORMATIF KUNCI JAWABANNO PENYELESAIAN SKOR BOBOT1. 2. Lengkapi tabel y = 1 2 x,y 2 1 -3 4,5 -3;4,5 1 1 -2 2 -2;2 -1 0,5 -1;0,5 00 0;0 1 1 0,5 1;5 1 22 2;2 1 3 4,5 3;4,5 1 3. Tempatkan titik-titik koordinat dalam tabel pada bidang koordinat 4. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut 8MODUL FUNGSI KUADRAT UNTUK SMP KELAS IXJumlah 15 151. 1. Lengkapi tabel 1 1y = 2 + x x,y 1 1-3 6 -3,6 1 1-2 2 -2,2 1-1 0 -1,000 0,012 1,226 2,63 12 3,121. Tempatkan titik-titik koordinat dalam tabel pada bidang koordinat2. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut 8 Jumlah 15 15MODUL FUNGSI KUADRAT UNTUK SMP KELAS IX3. 1. Lengkapi tabel y = x2 -x -2 x,y-3 10 -3,10-2 4 -2,4-1 0 -1,00 -2 0,-21 -2 1,-220 2,034 3,42. Tempatkan titik-titik koordinat dalam tabel pada bidang koordinat3. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut Jumlah 15 15MODUL FUNGSI KUADRAT UNTUK SMP KELAS IXSkor Maksimum 45 45SKOR = β 100 45MODUL FUNGSI KUADRAT UNTUK SMP KELAS IXDAFTAR PUSTAKAKementrian Pendidikan dan Kebudayaan. 2014. Buku Panduan Guru Matematika SMP KelasIX Edisi Revisi 2014 Kurikulum 2013. Jakarta Pusat Kurikulum dan Perbukuan Pendidikan dan Kebudayaan. 2014. Buku Panduan Siswa Matematika SMPKelas IX Edisi Revisi 2014 Kurikulum 2013. Jakarta Pusat Kurikulum dan PerbukuanBalitbang KemendikbudMODUL FUNGSI KUADRAT UNTUK SMP KELAS IX
Padakegiatan ini kamu akan menggambar grafik fungsi kuadrat ketika b = 0 dan c 0 Gambarlah grafik dari fungsi kuadrat berikut ini. a. y x 2 1 b. y x 2 1 Step 1 : Lengkapi ketiga tabel berikut ini.MODUL AYU ARDHILLA RAHMA, MATEMATIKA BENTUK UMUM FUNGSI KUADRAT DAN GRAFIK FUNGSI KUADRAT Penulis AYU ARDHILLA RAHMA, PPG DALAM JABATAN ANGKATAN KE-IV UNIVERSITAS NEGERI YOGYAKARTA KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN 2021KOMPETENSI DASAR DAN INDIKATOR PENCAPAIANNo. Kompetensi Dasar Indikator Pencapaian Kompetensi1. Menjelaskan fungsi Menjelaskan definisi fungsi kuadratkuadrat dengan Menentukan nilai-nilai fungsi kuadrat pada tabelmenggunakan tabel, Menentukan pembuat nol dari persamaan kuadratpersamaan, dan grafik Menentukan pasangan koordinat dari fungsi kuadrat pada bidang Cartesius Menghubungkan titik-titik koordinat sebagai grafik fungsi kuadrat2. Menyajikan fungsi Membuat tabel pasangan nilai variabel dan nilai kuadrat fungsi kuadratnya menggunakan tabel, persamaan, dan Menggambar sketsa grafik fungsi kuadrat grafik. Menentukan persamaan fungsi kuadrat jika diketahui titik puncak, titik potong, sumbu simetri atau beberapa titik pada persamaan kuadrat DESKRIPSI MODULDalam modul ini anda akan mempelajari 4 Kegiatan Belajar yang terdiri dari Kegiatan Belajar 1membahas tentang pengertian himpunan, notasi himpunan, dan kardinalitas himpunan, KegiatanBelajar 2 membahas tentang Jenis-jenis himpunan, Kegiatan Belajar 3 membahas tentanghubungan antarhimpunan dan diagram venn, dan Kegiatan Belajar 4 adalah membahas tentangoperasi pada Kegiatan Belajar 1, akan dijelaskan pengertian dan notasi atau lambang himpunan dancara menyatakan suatu himpunan dalam beberapa cara, yaitu dengan kata-kata, denganmendaftar, dan dengan notasi pembentuk himpunan, serta kardinalitas suatu himpunan. DalamKegiatan Belajar 2, akan diuraikan mengenai jenis-jenis himpunan. Dalam kegiatan belajar 3 akandibahas cara menentukan menentukan hubungan antarhimpunan dengan menggunakandiagram venn. Dan dalam kegiatan belajar 4 akan akan dibahas cara menentukan irisan,gabungan, selisih sifat-sifat operasi pada PRASYARATMateri ini merupakan materi lanjutan setalah kamu mempelajari persamaan linear dua variabeldan persamaan kuadrat. Tanpa mempelajari materi-materi itu, kamu akan kesulitan dalammemahami materi fungsi kuadrat ini, karena persamaan linear dua variabel dan persamaankuadrat merupakan materi prasyarat dalam memahami fungsi kuadrat, dan grafik fungsinya. TUJUAN PEMBELAJARANMelalui proses mengamati, menanya, mengumpulkan dan mengolah informasi sertamengkomunikasikan hasil mengolah informasi dalam penugasan individu dan kelompok,peserta didik dapat 1. Menjelaskan definisi fungsi kuadrat dengan benar 2. Membuat tabel pasangan nilai variabel dan nilai fungsi kuadratnya dengan tepat 3. Menentukan pembuat nol dari persamaan kuadrat dengan tepat 4. Menentukan pasangan koordinat dari fungsi kuadrat pada bidang Cartesius dengan tepat 5. Menghubungkan titik-titik koordinat sebagai grafik fungsi kuadrat dengan tepat 6. Menggambar sketsa grafik fungsi kuadrat dengan benar 7. Menjelaskan pengaruh dari koefisien x2 pada fungsi kuadrat fx terhadap karakteristik dari grafik fungsi fx dengan tepat Menentukan fungsi kuadrat jika diketahui grafiknya, titik puncak, titik potong, sumbu simetri atau beberapa titik pada persamaan kuadrat dengan KONSEP Bentuk Umum Tabel Fungsi Grafik terbuka Fungsi Kuadrat Kuadrat keatasFungsi Kuadrat Grafik Fungsi Grafik terbuka Kuadrat kebawah Persamaan Fungsi KuadratURAIAN MATERI Sebelumnya, kalian telah mempelajari persamaan linear dan persamaan kalian masih ingat tentang materi tersebut? Mari kita ulang sebentar materi tersebut. Persamaan Linear Persamaan linear satu variabel adalah kalimat terbuka yang memuat tanda sama dengan = dan hanya memuat satu variabel dengan pangkat satu. Bentuk umum persamaan linear satu variabel adalah ax + b = 0 dan a β 0. Penyelesaian persamaan linear adalah pengganti variabel yang menyebabkan persamaan bernilai 1. 3x + 1 = -7 2. 5m + 4 = 2m +16 Persamaan Kuadrat Persamaan kuadrat satu variabel adalah suatu persamaan yang memiliki pangkat tertingginya dua. Contoh bentuk persamaan kuadrat 2x2 β 8x + 5 = 0 x2 β x + 9 = 0 x2 β 16 = 0 2x x β 5 = 0 Secara umum bentuk persamaan kuadrat adalah ax2+bx+c = 0 dengan aβ 0, a,b,c Ο΅ R. Persamaan kuadrat terbagi menjadi 3, yaitu 1. Persamaan kuadrat lengkap ax2 + bx + c = 0, a β 0 untuk setiap a, b, c Ο΅ R 2. Persamaan kuadrat tak lengkap ax2 + bx = 0, a β 0 untuk setiap a, b Ο΅ R 3. Persamaan kuadrat murni ax2 + c = 0, a β 0 untuk setiap a, c Ο΅ R KEGIATAN BELAJAR 1 Tujuan Pembelajaran KB 1 Melalui proses penemuan dan diskusi kelompok, peserta didik dapat 1. Menjelaskan definisi fungsi kuadrat dengan benar 2. Menentukan nilai-nilai fungsi kuadrat pada tabel secara tepat3. Menentukan pasangan koordinat dari fungsi kuadrat pada bidang Cartesius dengan benar4. Menghubungkan titik-titik koordinat sebagai fungsi kuadrat secara tepatMateri Pembelajarana. Bentuk umum Fungsi KuadratFungsi Kuadrat merupakan suatu fungsiyang berbentuk persamaan umum fungsi kuadratf x = ax2 + bx + c, dengan a β 0Contoh f x = 3x2 + 5x + 7Untuk menentukan nilai-nilai dari fungsi tersebut, maka dapat dilakukan denganmensubstitusi variabel x ke dalam x = -1 maka f-1 = 3. -12 + 5-1 + 7 = 5 x = 0 maka f0 = 3. 02 + 50 + 7 = 7 x = 1 maka f1 = 3. 12 + 51 + 7 = 15 dan seterusnya Menggambar Grafik Fungsi y = ax2Menggambar grafik fungsi kuadrat yang paling sederhana, yakni ketika b = c = mendapatkan grafiknya anda dapat membuat gambar untuk beberapa nilai x dansubsitusikannya pada fungsi y = ax2, misalkan untuk a = 1, a = 2, dan a = -2Untuk mendapatkan grafik suatu fungsi kuadrat, terlebih dahulu harus mendapatkanbeberapa titik koordinat yang dilalui oleh fungsi kuadrat Melengkapi Tabel = = = β x y x,y x y x,y x y x,y-3 9 -3,9 -3 18 -3,18 -3 -18 -3,-18-2 4 -2,4 -2 8 -2,8 -2 -8 -2,-8-1 1 -1,1 -1 2 -1,2 -1 -2 -1,-20 0 0,0 0 0 0,0 0 0 0,01 1 1,1 1 2 1,2 1 -2 1,-22 4 2,4 2 8 2,8 2 -8 2,-83 9 3,9 3 18 3,18 3 -18 3,-18 titik-titik koordinat yang berada dalam tabel pada bidang grafik dengan menghubungkan titik-titik koordinat tersebut Keterangan Kurva y = x2 ditandai dengan warna biru Kurva y = 2x2 ditandai dengan warna hijau Kurva y = -2x2 ditandai dengan warna merahMenggambar Grafik fungsi y = ax2+ cKegiatan ini dibagi menjadi menjadi dua sub kegiatan. Pada kegiatan ini peserta didikmenggambar grafik fungsi y = ax2+ c sebanyak tiga kali, yakni untuk c = 0, c = 2 danc = -21. Melengkapi tabel x,y x = β x,y x = + -3,11 -3 -32 + 2 = 11 -2,6 -3 -32 - 2 = 7 -3,7 -2 -22 + 2 = 6 -1,3 -1 -12 + 2 = 3 0,2 -2 -22 - 2 = 2 -2,2 0 02 + 2 = 2 1,3 1 12 + 2 = 3 2,6 -1 -12 - 2 = -1 -1,-1 2 22 + 2 = 6 3,11 3 32 + 2 = 11 0 02 - 2 = -2 0,-2 1 12 - 2 = -1 1,-1 2 22 - 2 = 2 2,2 3 32 - 2 = 7 3,72. Tempatkan titik-titik koordinat yang berada dalam tabel pada bidang koordinat3. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut Keterangan Kurva y = x2 ditandai dengan warna biru Kurva y = x2 + 2 ditandai dengan warna orange Kurva y= x2 β 2 ditandai dengan warna pinkMenggambar Grafik fungsi y = x2 + bxKegiatan ini akan menjadi tiga sub kegiatan, yakni ketika b = 2, b = -2 dan ketika a =-1. Pada kegiatan ini anda akan mengenal titik puncak dari suatu grafik fungsi Melengkapi tabel dibawah inix = + x,y x = β x,y-3 -32 + 2-3 = 3 -3,3 -3 -32 β 2-3 = 15 -3,15-2 -22 + 2-2 = 0 -2,0 -2 -22 - 2-2 = 8 -2,8-1 -12 + 2-1 = -1 -1,-1 -1 -12 - 2-1 =3 -1,30 02 + 20 = 0 0,0 0 02 - 2 0 = 0 0,01 12 + 21 = 3 1,3 1 12 - 21 = -1 1,-12 22 + 22 = 8 2,8 2 22 - 22 =0 2,03 32 + 23 = 15 3,15 3 32 - 23 =3 3,3x = β + x,y-3 -32 + 2-3 = -15 -3,-15-2 -22 + 2-2 = -8 -2,-8-1 -12 + 2-1 = -3 -1,-30 -02 + 20 = 0 0,01 -12 + 21 = 1 1,12 -22 + 22 = 0 2,03 -32 + 23 = 3 3,32. Tempatkan titik-titik koordinat yang berada dalam tabel pada bidang koordinat3. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut Keterangan Kurva y = x2 + 2x ditandai dengan warna biru Kurva y = x2 β 2x ditandai dengan warna hijau Kurva y = -x2+ 2x ditandai dengan warna merahKEGIATAN BELAJAR 2Tujuan Pembelajaran KB 2 Melalui metode diskusi kelompok, peserta didik dapat 1. Menjelaskan pengaruh dari koefisien x2 pada fungsi kuadrat fx terhadap karakteristik dari grafik fungsi fx, jika diberikan fungsi kuadrat dan dikerjakan secara teliti2. Menentukan sumbu simetri dan nilai optimum fungsi kuadrat dan dikerjakan secara Menentukan titik optimum fungsi kuadrat secara tepatMateri PembelajaranA. Karakteristik Grafik Fungsi Kuadrat Fungsi kuadrat merupakan fungsi yang berbentuk y = ax2 + bx + c, dengan aβ 0. Grafik dari fungsi kuadrat menyerupai parabola, sehingga dapat dikatakan juga sebagai fungsi parabola Garis putus-putus pada gambar di atas merupakan sumbu simetri. Koordinat yang ditandai dengan bulatan merupakan titik puncak sedangkan koordinat yang ditandai dengan persegi merupakan titik potong dengan sumbu β Y Nilai b pada grafik y = ax2 + bx + c menunjukkan dimana koordinat titik puncak dan sumbu simetri berada titik puncak dan sumbu simetri dibahas lebih lanjut pada sub-bab selanjutnya. Jika a > 0 maka grafiknya y = ax2 + bx + c memiliki titikpuncak minimum. Jika a 0 maka grafiknya akan terbuka ke atas οΌ Jika a 0 dan nilai a makin besar maka grafiknya akan semakin βkurusβ οΌ Jika a 0 maka grafiknya akan terbuka ke atas- Jika a 0 dan nilai a makin besar maka grafiknya akan semakin βkurusβ - Jika a 0 dan bergeser c satuan ke bawah jika c 0 maka grafiknya y = ax2 + bx + c memiliki titik puncakminimum. Jika a < 0 maka grafik y = ax2 + bx + c memiliki titik pucak Nilai c pada grafik y = ax2 + bx + c menunjukkan titik perpotongan grafik fungsi kuadrat tersebut dengan sumbu β y, yakni pada koordinat c,0.9. Cara menyusun fungsi kuadrat dengan syarat tertentua. Diketahui titik potong dengan sumbu x dan satu titik yang dilalui = β 1 β 2b. Diketahui titik puncaknya dan satu titik yang dilalui = β 2 + DAFTAR PUSTAKAYuliati, Yuyun. Modul Pengayaan Matematika Kelas 7 SMP/MTs Semester 1 Kurikulum 2013. Jakarta DutaAsβari, Abdur 2017. Matematika SMP/MTs kelas IX semester 1 Kurikulum 2013 Edisi Refisi 2017. Jakarta KEMENTRIANPENDIDIKAN DAN KEBUDAYAAN REPUBLIK INDONESIA.
sLv90v.